347,525 research outputs found

    Discovery potential of Higgs boson pair production through 4\ell+E ⁣ ⁣/E\!\!/ final states at a 100 TeV collider

    Full text link
    We explore the discovery potential of Higgs pair production at a 100 TeV collider via full leptonic mode. The same mode can be explored at the LHC when Higgs pair production is enhanced by new physics. We examine two types of fully leptonic final states and propose a partial reconstruction method. The reconstruction method can reconstruct some kinematic observables. It is found that the mT2m_{T2} variable determined by this reconstruction method and the reconstructed visible Higgs mass are important and crucial to discriminate the signal and background events. It is also noticed that a new variable, denoted as Δm\Delta m which is defined as the mass difference of two possible combinations, is very useful as a discriminant. We also investigate the interplay between the direct measurements of ttˉht\bar{t} h couplings and other related couplings and trilinear Higgs coupling at hadron colliders and electron-positron colliders

    Associated Production of Neutral Higgs Boson with Squark Pair in the Minimal Supersymmetric Standard Model with Explicit CP Violation at the CERN LHC

    Get PDF
    We investigate the associated production of neutral Higgs boson with squark pair in the minimal supersymmetric standard model with and without explicit CP violation, respectively. We show that the dominant productions in both cases are always ones of the lightest neutral Higgs boson associated with the lightest stop pair, which can reach a few pb, in the ranges of parameters allowed by constraints from the electric dipole moment experiments. In most of the parameter space, the total cross sections in the case with explicit CP violation are significantly enhanced, compared with ones without explicit CP violation. For some special parameters, several orders of magnitude enhancement can be obtained.Comment: 4 pages, 7 figures, version to appear in PR

    Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source

    Full text link
    Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black holes with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in PvP-v diagrams. The two-phase equilibrium curves in PTP-T diagrams are plotted, and we take the first order approximation of volume vv in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for higher dimensional charged topological black hole with a nonlinear source. The latent heat of isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phases coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems.Comment: 21 pages,25 figures. published version in EPJC. arXiv admin note: substantial text overlap with arXiv:1411.7202; text overlap with arXiv:1506.01786, arXiv:hep-th/0605042 by other author
    corecore